David Goldfeder
Page 33 of 33
7/25/2001
Chapter 5: Classes an Outside Look

Universal Computer

Chapter 5: Classes an Outside Look

Script and Production Plan

Version 3

Screen 10:
Introduction to Chapter 5

Graphics:
This screen will have the primitive types int, float, double, and char on it.

Voice-Over:

In previous chapters you have learned about the primitive types that Java includes to represent concepts like a whole number (int) or a character (char). But this is not the end of Java’s abilities. To provide you with more problem solving power, Java includes the class construct.

Directions:
When the voice over finishes and mentions the class construct, there will be a flash of lightning and a boom of thunder. The primitive types will be struck by the lightning and disappear to be replaced by the word “class” in larger type.

Put the prerequisites on this page. That would be A Taste of Java (for coverage of Java expressions and statements), though it’s conceivable that one could start with this chapter, using BlueJ.

Screen 20: Classes from the Consumer’s Point of View

Graphics:
The professor personal will appear on the left of the viewing window in his speaking image. The student will appear when his/her lines come up. They will look confused. The professor will change to the thinking face when he proposes the example to the student, who will then also think briefly before answering. Lastly the professor will change to laughing when he finishes the example but then move back to speaking as he talks of the pre-requisites. The student will change from thinking to amazed and then disappear during the prerequisites to make room for the text display on the following screen.

Voice-Over:
Professor: In this chapter you will learn about classes from the consumer’s point of view. To use a class, to be a consumer of a class, you don’t need to understand all of the details of the implementation of that class. Instead, you need only understand its interface.

Student: Wait a second, how can you use something if you don’t know how it works?

Professor: To answer that, here is an example: Do you know how the internal machinery in a vacuum cleaner works?

Student: Not really.

Professor: But, you can still turn it on and clean your carpets! Later, in chapter 14, you will study classes from the supplier’s point of view.

In order to fully understand this chapter, you should be aware of the java primitive types, function declaration, variables, operators, and the basics of Java that were covered in Chapter 3.

Screen 25: The Overview of the Chapter
Graphics:
The professor speaking will be on the left and the sections will appear on the right as titles when he speaks. (see image)

Voice Over:

This chapter is split into four sections. In the first section, the concept of abstract data types and their connection to classes will be explored. After that, the BlueJ Java Programming Environment will be introduced. This environment is easier to use than Windows Notepad and DOS. Then, we’ll talk about the structure of classes so that you understand how to use the classes that are provided with Java. And lastly, we’ll discuss some of the built-in Java classes.

Test-Display:
This will be displayed to the user with the main topic headings appearing as the voice over mentions them.

Chapter 5 Topics:

1) ADTs and Classes

2) The BlueJ Programming Environment

3) The Structure of Classes

4) The Java Class Library

At the end of the voice over, the professor will disappear, as will the words “Topics Include:” and the numbers preceeding [preceding] the section headings. The headings themselves will move to the locations described in the “Graphics” section of Screen 27.

[image: image1.jpg]Topics Include:
1)ADTs and Classes

2)The Blued Programming

Environment
3)The Structure of Classes

4)The Java Class Library

Screen 27:
Graphics:
Four icons will appear on this screen in a 2 x 2 square pattern. The upper left square will be the picture of boxes that opened up the ADT section in the original multimedia. The upper right is the BlueJ logo to introduce section 2. Section 3’s icon will be a picture of the new Lehigh parking garage under construction to represent a structure. And the last icon will be the Java coffee cup logo to introduce the class library section of the chapter.

There will also be a line at the bottom reading “Chapter Summary and Quiz.”

NOTE: Can we use the logos and the snapshot in the multimedia and not be breaking the law?

Good question. For educational purposes, we're OK, but I should request

permission. I've been trying to contact Kolling about BlueJ; maybe he is traveling. When I hear from him, I'll ask for permission to use the logo and snapshots; it's unlikely he'll object to this. (I'm also asking if we can modify the source code for collaborative learning some day; it's more likely he'll balk at that, but we'll see....) The Java logo could be more problematic though; I believe UM uses a clipart picture of a coffee cup rather than Sun's logo. Using that would avoid the grief of figuring out who to talk to at Sun. I just made a screen capture for you.

Voice Over:

Click on any of the four destinations to begin that part of the chapter.

Directions:

Section One starts at screen 30.

Section Two starts at screen 1000.

Section Three begins at screen 150.

Section Four begins at screen YY.

The Chapter Summary and Quiz begins at screen ZZ.

When the user clicks any one of the destinations, it will take them to the corresponding page.

This screen is separate from the last so that we can come back here at the end of each section.

Screen 30: Data Types
Graphics:
This screen has no graphics. There is, however, a text display (see below).

Voice-Over:
A type is a way of representing data. But, a type is more than just a representation of data, it is also the associated methods and operators that can manipulate that data.

Text Display:
On the screen the phrase “Data Types = Representation of Data” will be located centered horizontally on the screen but just above the vertical center point. Later, the phrase “Data Types = Operators & Methods of Data” will appear as well.

Screen 40: Data Types as Associates between Data and Operations

Graphics:

The beginning of the ADTs section of the original multimedia will be used here. This screen will have a space for the text display on the left hand ¼ of the viewing area. The other area will be made up of three rows containing, to start, the words int, double, and char in different colors to distinguish their sections.

Voice Over:

On the right are three of the java primitive data types. Each of these classes represents data a little differently. As you’ve learned, an int represents a whole number, double a real number, and char represents a character from the ISO Unicode character set. Beyond these representations, each of the data types also associate operators and methods that have meaning for their data.

For example, notice that the int type associates the modulus operator, but the double type does not. Since finding the modulus, the remainder, of two whole numbers has meaning but finding it for real numbers does not, the types that represent these data associate or disassociate this operator.

Direction:

During the voice over and after, the screens that began the original multimedia for the UM Chapter 5 and its discussion of types and operator associations will be used.

Screen 50: Student Persona asks a question

Graphics:
The student personal will appear on the left with a speech bubble.

Voice Over:

Student: “Whoa! I’m confused. Why can’t the double type use the modulus operator and what does that have to do with associating data and operators?”

Actually, this point about modulus operator gets covered pretty well in chapter 3, so such a student must have been dozing. You might want to rewrite this to allude to having seen it before, i.e.:

Student: “I know we covered this, but.... Why can’t the double type use the

modulus operator?”

(BTW, you should try to keep the content of TA and student dialog short,

so it will fit into cartoon balloons.)

Another comment about student personae. Since Soma will be a student,

and she is not as expressive as you are (the other student), you might to

write some script for a less "wowwy" student, too.... Both students could also

also appear in the same dialog.

Only if the user clicks option D to invoke the professor will a voice over happen. Then, it reads:

The double type can’t use the modulus operator because there is no remainder when you divide two real numbers. This shows us how a data type can be associated (or not be associated) with operators – the modulus operator has no meaning for real numbers so the double type doesn’t associate them.

Directions:

If the user gets the correct response (A) the student will switch to a happy face. Then they will continue to screen 60. If they get it wrong, the student remains confused and they cannot continue.

If the learner clicks on option D, which is the “I don’t know” option, then the professor will appear and option A will be highlighted.

Feedback Messages:
A. The double type can’t use the modulus operator because there is no remainder when you divide two real numbers. This shows us how a data type can be associated (or not be associated) with operators – the modulus operator has no meaning for real numbers so the double type doesn’t associate them.

Wow. That’s right! That makes much more sense to me now. Thanks!

B. The double type can use the modulus operator!!

No that’s not it. Remember on the last screen it showed us that the double type cannot use the modulus operator.

C. The double type can’t use the modulus operator because the programmers of Java didn’t want it to.

Well, I suppose that’s true, but what reason did they have for not including an association between the modulus operator and the double type.
D. I don’t know. Maybe we should ask the professor.

Yeah, you’re probably right.

 (at this point the professor appears – see directions)

Screen 60: Professor asks “What is the best definition of Data Type”
Graphics:

The professor appears in his usual corner with the speech bubble showing “What is the best definition of Data Type?”

Voice Over:

“What is the best definition of Data Type?”

Directions:

Choosing the right option, option C, will move the user onto screen 70. Any other option will keep the user here. Also, feedback responses will appear in the professor’s speech bubble.

Feedback Messages:
A. Data Type – a type of data.

I’ve tightened up your feedback a bit below. Note that students should get to used to the idea that they can pick again (prior to the final quiz), so you don’t need to prompt them to choose again. Also notice that correct answers should explain why they are correct (a learner might not have been sure).

Well, I suppose that’s true, but such circular definitions are hardly satisfactory.h Rather circular, aren’t we? There’s a better definition lurking nearby.

B. Data Type – a representation of the way data gets stored in memory.

This is only a partial answer, for What good are data items without operators and methods to manipulate them? There is a better answer available.
C. Data Type – a representation of data that includes associated operators and methods.

Correct; you’re really getting the hang of this Right, the methods are essential, because they let us manipulate the data.

Screen 70: Why abstraction is useful
Graphics:
Centered in the viewing window is the abstract art painting created for the prototype ADT chapter. Beneath it, an arrow and the words “Abstract Art” will appear.

Voice-Over:
Technically, Java doesn’t have ADTs; it has classes that approximate ADTs. Nor are ADTs uniquely associated with Java, so….

In java, data types are given a qualifying adjective – they are called Abstract Data Types, or ADTs. Unlike a concrete idea, something that is abstract is often hard to understand. For example, many people find abstract art hard to understand.

In computer science, and the other sciences, however, abstraction is a very useful tool – it allows us to hide details in order to make understanding easier.

Directions:

The words “Abstract Art” and the arrow will appear under the painting when the voice over mentions abstract art. They will appear with a “boing” noise in the background.

Since the ADT chapter is using one of Harriet’s abstract pictures, I recommend you use the other one here. I’ll send both to you; the one I recommend for this chapter is HarrietAbstract1.png.

Screen 80: The TV
Graphics:
The TV image along with an internal TV view from the original UM Chapter 5 movie is displayed here. The professor will appear over the Cathode Ray tube side of the image in speaking. When he mentions the insides of the TV (third sentence of voice over) he’ll look down at the cathode ray tube and look up surprised. He’ll then slide over the outside view of the TV and begin speaking again. He’ll look down at the TV when it plays.

Voice Over:

To make this concept clearer, let’s look at an abstraction – a television. In this day, everyone one knows how to use a TV. However, not many of us understand what a cathode ray tube does or how it makes the TV show appear! Instead, we just use the remote control, which is the TV’s

interface, in order to control its behavior.

Directions:

I would like to display something on the TV following the voice over, but I could use suggestions. Originally it was a bit of the cartoons from Chapter 3, but maybe we can do something different this time.

I really like the UM cartoon. It's an inside joke and provides simple continuity between chapters.

Screen 90: Procedural Abstraction
Graphic:

Knobby appears on the left of the screen. Next to him, on the right, is the Knobby’s World definition “define right as { left left left }”

Voice Over:
There are two kinds of abstractions in computer science. The first one is procedural abstraction. Our old friend, Knobby, can show us an example of this.

In Knobby’s World, after we define the command “right” as three turns to the left, we have created a procedural abstraction. In other words, we can then use the command right instead of using “left left left” all the time. Procedural abstraction hides many steps behind one command. Watch …

(pause here for animation)

See? When we invoked the new right command, Knobby performed all three left commands at once! This is procedural abstraction.

Directions:
The word “right” will glow on the screen and then knobby will spin three times to the left (to end up facing the right).

Screen 100: Data abstraction
Graphic:

None – any suggestions on an image for data abstraction would be helpful!

Why don’t you just combine screens 90 and 100?

Voice Over:

The other type of abstraction is Data Abstraction—which hides the details of both data types and their associated procedures, together. We only need to what the ADTs do, not their internal implementation.
 We’ve already seen examples of this. Data abstraction is the ability to use data types and their associated operators without understand how those associates are made or work We only need to know the semantics or meaning, of the ADTs, their meaning.
Text Display:

The text of the voice over will be displayed on the screen to avoid an empty screen.

Screen 102: Professor asks a Question: Procedural vs. Data Abstraction
Graphics:
Professor appears and states, via a speech bubble, “Please choose the example that shows Procedural Abstraction.”

Voice Over:

Please choose the example that shows Procedural Abstraction. .

Feedback Messages:

A. A few screens ago there was a TV. When turned it on and changed the channel, the TV reacted accordingly. This is Procedural Abstraction.

I hope we got this straightened out: a TV illustrates data abstraction, not procedural. The button modifies the a state of the TV, so it’s not just a button procedure. (Think about how this works in Java.)

Also, you need to tighten up your feedback messages a bit.

You’re right! When you clicked the buttons on the TV, it invoked a method, a procedure, which abstracted a number of different operations into that single button click. That is the essence of Procedural Abstraction.

B. When you multiply two integers together, you don’t need to know how the computer multiplies the two numbers, you just need to know that the multiplicative operator and the int class are associated.

Nope, sorry. This is Data Abstraction because you only have to know that the data and the operator are associated to use the abstraction. Try again; you’ll get the right answer!

C. The modulus operator doesn’t work with double values because they are not associated.

I’m afraid not. This relates to data types and data abstraction more than Procedural Abstraction.
D. The int type represents and integer or whole number, but the double type represents real numbers.

This one’s not the right answer. Whenever you think about data representations, think of data types. Remember – data types are a representation of data that also associates the methods and operators, which can be used on that data.

Directions:

Option A will allow the learner to move to screen 104. The others keep them here

Screen 104: Professor asks for an example of Data Abstraction
Graphic:
Professor asking the learner to “Please choose the example of Data Abstraction.”

Voice Over:
Please choose the example of Data Abstraction.

Feedback Responses:

A. A few screens ago there was a TV. When turned it on and changed the channel, the TV reacted accordingly. This is Procedural Abstraction.

Nope, sorry. This is an example of Procedural Abstraction because it hides all of the operations of changing the TV channel or turning the TV on behind the simple action of pressing a button.

B. When you multiply two integers together, you don’t need to know how the computer multiplies the two numbers, you just need to know that the multiplicative operator and the int type are associated.

Excellent, this is an example of data abstraction because you don’t need to understand how the computer multiplies the two whole numbers, just that the int type associates its data to the multiplicative operator.

C. The modulus operator doesn’t work with double values because they are not associated.

Well, sort of … This is really an example of a property of the type double, not of data abstraction. However, if you would use the modulus operator with a class, which is, associated to it (like int) that would be data abstraction!
D. The int type represents and integer or whole number, but the double type represents real numbers.

This one’s not the right answer. Whenever you think about data representations, think of data types. Remember – data types are a representation of data that also associates the methods and operators, which can be used on that data.

Directions:

Option B will allow the learner to move to screen 104. The others keep them here.

Screen 110: Classes
Graphics:
The word class appears in large type centered on the screen. The Professor will appear in the persona corner speaking face.

Voice Over:

Every high-level programming language provides a small number of built in ADTs for programmers to use. Java (as well as other object-oriented languages like C and C++ and Smalltalk) provides the lets a programmer with the ability to make their own new ADTs. Classes are how Java represents these user defined data types. In fact, Classes can be considered are the building blocks of any object-oriented language.

C is not an object-oriented programming language!

Also, try to avoid passive voice and other wordy ways of saying things. Your words will not only be spoken but may appear on the screen.
Screen 120: Classes as Categorical Representations
Graphic:

The word class remains from screen 110 as does the professor.

I don’t really like this screen, but I think we need it to illustrate the fact that classes are a normal way of representing categorized information. I think a better graphic will help. Any suggestions?
Actually, we don’t see classes, but objects, as we walk down the streets. What you mean, is that people naturally categorize the objects they see into classes.

You are actually starting to cover material that will be covered in later chapter.

I think we can get by without this screen, or the next one, and just allude to these ideas quickly on screen 140.

Voice Over:

Classes are very natural things. In fact, you see them every day. Walking down the street you see buildings and cars and trees and clouds. These are all classes, or categories of objects. The difference between these natural categories and a Java class are many – but the concept is similar. Humanity represents the world as different classifications of objects – compete with a recognizable form, typical properties and normal behaviors. Java classes are the same. They are a piece of code, which also has a form, some properties, and behaviors.

Screen 130: Classes vs. Objects (Instances)
Graphics:
The word class remains from screen 120. However, it slides to the left prior to the voice over to make room for the phrase “vs. Objects” to appear. The result is the phrase “Classes vs. Objects” centered on the screen. During the second paragraph the phrase will disappear to be replaced by figure 5.1 from the text book – an image of cookies and cookie cutters.

Voice Over:
Java makes a very clear distinction between classes and objects. A class is an abstraction, which defines the properties (data) and behaviors (methods) of that class. The object, on the other hand is a particular instance of the class. There can be any number of objects, but there is only ever one class of those objects. For example, there are a lot of different types of trees – these are the objects – but there are properties and behaviors common to all trees – that is the class tree.

Many people find it easy to visualize a class as a cookie cutter. You can use a cookie cutter shaped like a start to cut out any number of star shaped cookies, but you only ever need one star shaped cookie cutter. The cutter is the class, and the cookies are the instances, or objects, of that class.

Screen 140: End of Section One

Graphic:

A street scene with a person, a building, car, and a tree.
The professor persona appears with a speech bubble, “The difference between classes and objects is very subtle, and very hard to understand. The next section of this chapter, in which the I’ve instructed the TA to show you the BlueJ programming environment, will help you to grasp this tricky concept.”

Voice Over:

Walking down the street, you naturally observe objects, such as buildings, cars, and trees. You easily recognize each object as an instance of a class, or category of objects. Objects belonging to natural classes have a recognizable form, properties and behaviors. For example, one of the property of tree is its height, and one of its behavior is changing colors in the fall. Similarly, objects belonging to Java classes have a form (computer code), and associated properties and behaviors.

Next, you’ll learn about classes and objects in Java, using the BlueJ Programming Environment. Or, you can just move on by clicking the forward button.

Directions:
As voice-over mentions each object, highlight it (negative image?) with a line (of sight) from the person to the object.

When voice-over mentions classes, put corresponding words (building, car, tree above the objects.)

When voice-over mentions the property of trees, put the following text next to the tree, gradually:

Properties:

height: 11.7 meters [pause before adding 11.7 meters]

…

Behaviors:

changeColor() [pause, then change the color of the tree’s leaves.]

When use clicks the forward button, they are sent back to screen 27, which will allow them to choose the next section of the chapter they wish to view.

Screen 150: Introduction to Section 3

Graphic:

A box will appear in the center of the screen with “class” on the side of it. It opens and the words public, private, information hiding, and constructor fly out to pick different positions around the screen.

Voice Over:
Greek mythology tells us that a long time ago, a woman named Pandora took a peek inside of a box and let out all the bad emotions that plague humanity. Why did she look in the box? She was curious. By this time you’re probably curious, too – about what is inside class. Hopefully, as we take a peek inside classes, the experience is much better than the one suffered by Pandora!

A slight problem with this screen is that learners have already seen a bit about classes in chapter 3. So it’s not a Pandora’s box to them. I don’t think you need this page.

A more significant problem with your subsequent screens is that they take a syntax-first approach, which is precisely what BlueJ was designed to avoid. I really urge you to follow the approach developed in the text I wrote for chapter 5. Start by having users get into the BlueJ environment and run the shapes program, observing what classes look like, then invoking constructors to instantiate several different objects (say, a Square, a couple of Circles, and a Triangle). After they get into BlueJ, ask them questions about what they observed, then encourage them to continue, by looking at the methods associated with object instances, then ask them questions about methods. Then have them look at instance variables, then have them look at the source code, but first have them switch to the interview view, asking them questions about that. Then, look at source code, but primarily with an eye for the essentials, then ask them to make a minor change, such as changing the default color of a Triangle. Finally, you will be ready to look at the syntactic details. This is the outside-in approach, right?

Here’s how the book introduces BlueJ:

 SEQ CHAPTER \h \r 1To make these ideas even more concrete, let’s take a look at some classes and objects using SEQ CHAPTER \h \r 1the BlueJ programming environment, which has been especially designed to teach object-oriented programming to beginners. In the multimedia, you can find it on the menu under the Tools button, or you can find it using Windows Explorer. Open the shapes project (it’s in the examples folder). If you get this far, you should see this:

Screen 160 could follow this pretty closely, telling learners what to do, with a screen shot of what they should expect to find.

Screen 160: Structure of a Class using BlueJ’s circle.

Graphic:
This page displays the some of the code for the BlueJ circle class (figure 5.6 in the text).

Voice Over:

Displayed here is some of the source code of the BlueJ circle class that you manipulated in the second part of this chapter. It shows us the generalized structure of almost all classes.

Import statements will have been introduced in chapter 3. More about import statements can wait until you want to introduce the idea of packages. So you don’t need this screen here.

At the top of almost every class are import statements. The statements tell the java compiler to import the code for the package that is named. This is a good example of abstraction – you don’t need to code things that are provided by Java, just import them and use them as a consumer. In this case, the BlueJ circle class needs to import parts of the Java AWT package – the abstract windows toolkit. The AWT will be discussed later.

Directions:
The import statements at the top of the code will glow when the voice over discusses them.

Screen 170: The class declaration
Graphic:

The code of the BlueJ circle class is still displayed. The professor is in his corner and the student will appear confused when her/his line comes up.

How about putting the code on or next to a graphic of a circle?

Voice Over:

The next part of the class is the declaration of the class. For this, we need the keyword class. The word that follows the keyword class is the class name. When you use a class, you specify the class name just like you would a primitive type when you want to make an instance of that class. For example, if you wanted to declare and integer and name the variable myInteger you would only need to display the code:

int myInteger;

Similarly, if you wanted to make an instance of the class Circle you would only have to type the code:

Circle myCircle;

Student: In this class, the class name is Circle and the class represents a geometric circle. I’m guessing that this isn’t a coincidence?

Professor: That’s right. Just like variable identifiers, class names should help to define what the class means.

Directions:
The class declaration will glow during the first paragraph of the voice over. The phrases “int myInteger;” and “Circle myCircle” will appear when the voice over mentions them.

Screen 180:
Public vs. Private
Graphic:

The cartoonish doors from the prototypical ADTs chapter will be displayed here. The professor will be in his corner speaking until the TA interrupts at which point he’ll switch to the thinking pose (which also looks a little frustrated.) The TA will disappear from the screen after her line.

Voice Over:
Before we go further, there are two important keywords that need to be introduced. They are public and private. These The two keywords public and private define what is and what is not a part of the class’s interface.

T.A.: Sorry to interrupt, Professor, but I don’t think you’ve ever truly defined what the interface of a class is.

Professor (surprised): Well, then I shall do so now. (Professor will switch to speaking face again) The interface of a class is the set of methods that are available to the consumers of that class. To put it in the terms of the keywords private and public, the interface consists of the public methods of a class but not the private ones.

Screen 185: Information Hiding
Graphic:
Our TV picture is back. Above it are the words public and private as they appeared on the picture of the doors on the previous screen.

Voice Over

Think back to our example from section one – this television. Drag the words public over the picture that represents the interface of the TV and the word private over the picture that represents the details that the interface hides.

(after the learner places the words correctly, this voice over will continue)
Graphic:

Show two different clip art people, looking a with a wall between them, one labeled “consumer” and the other “supplier. While talking about consumers, rotate the wall so that it shows a title “Interface” with some Javadoc interface code, e.g., for class Square. Then while talking about suppliers, rotate to the other side of the wall so that it shows a title “Implementation” with some actual Java code on it, e.g., for class Square. Do this again while talking about Java classes, only this time highlighting different parts of the Java code (public parts for interface, implementation parts for implementation).

This TV now provides us with an example of another concept that is important to Computer Science: information hiding, This concept, proposed in 1972 by computer scientist David Parnas. which David Parnas proposed in 1972. Consumers of a class only need to know about the interface and nothing more. Similarly, suppliers of a class only need to know everything about implementing a class, but that is a topic for Chapter 14.

Java classes facilitate information hiding with the keywords public and private. Anything that is designated public becomes a part of the class interface and is available to consumers of that class. However, private methods of a class are not available to consumers – the class itself can only use them.

Feedback Response:

For correctly placing the words:

Excellent. I see you are familiar with the public interface of TVs!

For incorrectly placing the words:

Hmmm … well, that’s not right. The remote control and the screen of the TV are available to the person watching the TV while the cathode ray tube and interior machinery are not. Does that help you solve this problem?

Hmmm… . When you watch TV, do you open it up and tinker with the cathode ray tube? Or do you just push the handy buttons?

Screen 190: Instance Variables
Graphic:
The code from BlueJ’s circle class is displayed again.

Show two circles, labeled circle_1 and circle_2.

Voice Over:
Technically, instance variables no need to follow the class declaration.

Let’s get back into the structure of classes. After the class declaration, the next part of a class is called the Data Members or Instance Variables of the class.

Remember the BlueJ environment allowed you to inspect an object? When you did that you were looking at the instance variables.

These variables represent the data values held by each instance of a class.

Though all instances of a class get the same variables, the values of the variables may be different in each instance. For example, all instances of class Circle get a diameter and several other instance variables; but in circle_1, the value of diameter may be 2.0, while in circle_2 the value of diameter may be 3.5.

Shouldn’t the following paragraph be on the previous screen? I suppose you might argue, on the previous screen I haven’t talked about instance variables yet. But the learner has certainly seen variables. So you could move the following paragraph to the end of the previous screen if you just drop the word “instance.”

Instance variables are usually private so that they cannot be changed outside of the class. This is another way that the class construct helps you hide information: the instance variables are to a class as the cathode ray tube is to the television. These are the details that the consumer of a class need not know about in order to simply use the class.

The following paragraph introduces far too many concepts for this page. For now, drop it.

Notice that the syntax for variable declaration follows the keywords public or private in data member declaration. That is because data members are nothing more than variables of a specific data type contained within a class. And don’t forget, classes are data types as well, so a data member could also be a class!

Directions:

The data members will glow throughout this explanation.

In circle_1 and circle_2, show different values for diameter.
Screen 200: Class Methods
Graphic:

Still the BlueJ circle code. The space on the left will display the phrases:

Circle.moveHorizontal(50)

Circle myCircle = new Circle();

myCircle.moveHorizontal(50);

When the voice over talks about them.

The top phrase, the incorrect one, will be X’ed out to show that it is wrong.

Voice Over:

These are a class’s member functions, or methods. They are functions that are contained within a class, therefore they must be qualified as either public or private. To access public methods of a class you use the dot operator. You did this in Chapter 3 without knowing it when you used methods of the Math class, like Math.abs(x).

Because Java has static methods, you can use class.member; in fact that’s what Math.abs(x)is. So….

Remember, though, that For most classes, the syntax to call a public member function you usually use is object.member, not class.member. (There are a few exceptions to this rule, such as invoking methods of the Math class, e.g., Math.abs(x).) So to access the moveHorizontal() function of the BlueJ Circle class, you wouldn’t say Circle.moveHorizontal() but rather you would have to declare an instance of Circle, perhaps called myCircle, and then you would call myCircle.moveHorizontal().

Directions:

The methods displayed on screen are highlighted throughout the first paragraph. During the second paragraph, the calls to erase() and draw() glow.

 Screen 210: Constructors

Graphic:

The BlueJ Circle code stays on the left. The phrases from screen 200 disappear except for the line “Circle myCicle;” Later, as the voice over speaks of initialization the phrase “ = new Circle()” will be inserted into the picture where applicable.

Also show graphic a circled labeled myCircle when it is created?

Voice Over:
Our previous slide showed you the code snippet that still appears on the right of this screen. This code snippet illustrates the use of the constructor for the Circle class.

Constructors are special public methods of a class that initialize the instance variables. You can declare a class like so (pause … the class declaration on the screen will glow and then fade to normal), but it has not been initialized yet, only declared. Before you can use the object, you have to initialize with a constructor like this.

A class’s constructor always has the same name as the class it constructs. So the Circle class’s constructor is called Circle(). The purpose of a constructor is to initialize the instance variables of a class in order to prepare it for use by its consumer.

Screen 220: Default Constructors

Graphic:

Our BlueJ code example is still there. Except this time it will be shifted around to include both a default constructor (as always) and the additional constructor from the ch5shapes Circle class. The new constructor will fade in when cued in the voice over

Try to animate the activity of the constructor. Your script is rather light on animations.

Voice Over:

There are two different types of constructors: Default Constructors, like the one on the screen now, and Non-Default Constructors (usually just called constructors) like the one appearing now.

The difference between the two types is relatively simple, and if you look closely at the examples you might even be able to guess it. A default constructor takes no parameters, and therefore must initialize all data members to default values – hence the name. A regular constructor, on the other hand, takes at least 1 parameter and initializes variables using that parameter. In our example, notice that this new constructor allows us to initialize the diameter of the circle to the value of the parameter, d.

Notice that these new constructors need not initialize every data member based on parameters. Only the ones you need them to.

Screen 230: Javadoc Comments

Graphic:

The BlueJ Circle code is back without the ch5shapes constructor. The Javadoc Comments are highlighted. As parts of the comments are discussed, they will glow brighter than the rest.

Voice Over:
In chapter 3 we discussed comments and why they’re a good idea. Before each of the class members here, we see a third type of comment: the Javadoc Comment.

Javadoc is a tool that comes with Java to help document the interface of a class. To that end, this special style commenting helps in that process. Notice that the beginning of a Javadoc Comment starts with the symbol /** and that every line of the Javadoc Comment must begin with another *. It ends with a normal */.

The Javadoc tool analyzes Java source code looking for these comments. It then copies the comment into a html file so that you can use these files to tell others about the interface of your classes. That way they don’t have to sift through the source code looking for comments and other essentials.

Screen 240: Librarian helps out JDK documentation [Try to make sure your screens have titles that will facilitate searching with the find button]

Graphic:
The librarian will appear on the screen with her surprised face and the minimize to the bottom corner as the professor did in the prototype. She will switch to speaking face in the corner.

When she cues the website to appear, the following site will show up on the screen: http://www.java.sun.com/j2se/1.3/docs/api/index.html
Voice Over:
The thoughtful people at Sun Microsystems, who produce Java, ran all of their built-in classes through the Javadoc program and placed the files on the web. With these web pages, you can see the interface for any Java class that you would like to use in your programs.

Here is the website for you. This documentation is so handy, I understand you may also have a copy of this documentation available on your local CD-ROM or hard drive. You may want to write this down. Or you can go look at the website now. Either way, click the forward button when you are ready to continue.

TA appears, then her voice-over: Not so fast! Watch this.

Graphic:

Show an animation of applet loading a graphical image.

TA voice-over:

Here’s a little exercise for you: using the Java documentation, find a method of class, find a way to get an applet to load a graphical image from some location on the web. When you’ve think you’ve found the method, come back to the multimedia and go to the next screen, where I’ll check to see what you found. (If you need help, ask the librarian.)

Direction:

Clicking on the hyperlink should open another window, so user can return to the multimedia window.

Screen 261 should be the promised quiz.

Screen 270: Extractors
Graphic:

This screen show the code for ch5shapes Circle class extractors:

/** Extract the diameter of this Circle */

int getDiameter()

{ return diameter; }

/** Extract the color of this Circle */

String getColor()

{ return color; }.

Voice Over:

The last part of a class is called an

These methods are extractors, from the ch5shapes project’s Circle class. Sometimes even the consumer of a class needs to know a little about the value of private instance variables of the class (even though the supplier still wants to keep them private). Extractors give consumers the ability to get the value of a private instance variable.

Student: So why not just make the instance variables public?

Professor (with happy face). Good question! Well, an extractor lets you get the value of a instance variable, but it doesn’t let you change it.

Another student: Couldn’t the supplier also provide a method that let me modify an instance variable?

Professor (with happy face). Yes indeed! Such a method would be an insertor, inserting a value into an instance variable.

First student: Well, if you’re going to allow insertors to change instance variables, why not just declare the variables public?

Second student: Yes, that’s what I was wondering.

Professor (thinking face). Let’s see… Well, keeping instance variables private lets the supplier make sure the values in the variable are meaningful. For example, you shouldn’t be allowed to change value of color to “bleak”! Moreover, information hiding leaves the supplier is still free to change the representation of the data, so long as the public methods still behave the same way.

Graphic: show method

void changeColor(String color)

Animate changeColor rejecting “bleak”

